Skip to main content Skip to page footer

Journal articles

64. A. Buchheit and  S. Rjasanow. Ground state of the Frenkel–Kontorova model with a globally deformable substrate potential. Physica D: Nonlinear Phenomena, 406 : 132298,11, 2020.

63. T. Keßler, S. Rjasanow, and S. Weißer. Vlasov-Poisson system tackled by particle simulation utilizing boundary element methods. SIAM Journal on Scientific Computing, 42(1) : B299-B326, 2020.

62. T. Keßler and S. Rjasanow. Limit model for the Vlasov-Maxwell system with strong magnetic fields via gyroaveraging. Algebra i Analiz, 32(4) : 200-216, 2020.

61. T. Keßler and S. Rjasanow. Fully conservative spectral Galerkin-Petrov method for the inhomogeneous Boltzmann equation. Kinetic and Related Models, 12(3) : 507-549, 2019.

60. T. Kemmer, S. Rjasanow, and A. Hildebrandt. NESSie.jl – Efficient and Intuitive Finite Element and Boundary Element Methods for Nonlocal Protein Electrostatics in the Julia Language. Journal of Computational Science, 28 : 193-203, 2018.

59. R. Grzhibovskis, C. Michel, and S. Rjasanow. Matrix-valued radial basis functions for the Lamé system. Mathematical Methods in the Applied Sciences, 41(16) : 6080-6107, 2018.

58. I. M. Gamba and S. Rjasanow. Galerkin-Petrov approach for the Boltzmann equation. Journal of Computational Physics, 366 : 341-365, 2018.

57. S. Rjasanow and L. Weggler. Matrix Valued Adaptive Cross Approximation. Mathematical Methods in the Applied Sciences, 40(7) : 2522-2531, 2017.

56. M. Fleck, R. Grzhibovskis, and S. Rjasanow. A New Fundamental Solution Method Based on the Adaptive Cross Approximation. Memoirs on Differential Equations and Mathematical Physics, 65 : 93-111, 2015.

55. S. Rjasanow and S. Weißer. FEM with Trefftz trial functions on polyhedral elements. Journal of Computational and Applied Mathematics, 263 : 202-217, 2014.

54. F. Schongen, F. Klocke, P. Mattfeld, S. Rjasanow, M. Fleck, and R. Grzhibovskis. Time-efficient and precise FEM/BEM simulation of a cold forging process verified by tool load determination. Key Engineering Materials, (554-557) : 317-327, 2013.

53. R. Grzhibovskis, S. Mikhailov, and S. Rjasanow. Numerics of boundary-domain integral and integro-differential equations for BVP with variable coefficient in 3D. Journal of Computational Mechanics,  51 : 495-503, 2013.

52. M. Bebendorf, A. Kühnemund, and S. Rjasanow. An equi-directional generalization of adaptive cross approximation for higher-order tensors. Applied Numerical Mathematics, 74 : 1-16, 2013.

51. S. Rjasanow and L. Weggler. ACA accelerated high order BEM for Maxwell problems. Journal of Computational Mechanics, 51 : 431-441, 2013.

50. S. Rjasanow and S. Weißer. Higher order BEM-based FEM on polygonal meshes. SIAM Journal on Numerical Analysis, 50(5) : 2357-2378, 2012.

49. M. Bisi, S. Rjasanow, and G. Spiga. Numerical studies of a granular gas in a host medium. Journal of Computational Physics, 231(4) : 1339 - 1359, 2012.

48. R. Grzhibovskis and S. Rjasanow. New Applications of the Adaptive Cross Approximation in Mechanical Engineering. Rivista di Matematica della Universita di Parma, 2(1) : 77-98, 2011.

47. R. Kirsch and S. Rjasanow. The Uniformly Heated Inelastic Boltzmann Equation in Fourier Space. Kinetic and Related Models, 3(3) : 445-456, 2010

46. H. Andrä, R. Grzibovski, S. Rjasanow, and A. Zemitis. Boundary element method for calculation of effective elastic moduli in 3D linear elasticity. Math. Methods Appl. Sci., 33(8) : 1021-1034, 2010.

45. M. Groppi, S. Rjasanow, and G. Spiga. A kinetic relaxation approach to fast reactive mixtures: shock wave structure. Journal of Statistical Mechanics: Theory and Experiment, 389(21) : 4528-4544, 2010.

44. I. Ibragimov and S. Rjasanow. Three way decomposition for the Boltzmann equation. Journal of Computational Mathematics, 27: 184-195, 2009.

43. B. Auchmann, S. Kurz, and S. Rjasanow. A Geometrical Approach to the Boundary Element Method. IEEE Transaction on Magnetics, 44(6): 766-769, 2008.

42. M. Bambach, R. Grzibovski, G. Hirt, and S. Rjasanow. Adaptive Cross Approximation for surface reconstruction based on Radial Basis Functions. Journal of Engineering Mathematics, 62(2): 149-160, 2008.

41. R. Kirsch and S. Rjasanow. A Weak Formulation of the Boltzmann Equation Based on the Fourier Transform. J. Statist. Phys., 192: 483--492, 2007.

40. S. Rjasanow and W. Wagner. Stochastic weighted particle method, theory and numerical examples. Bulletin of the Institute of Mathematics, Academia Sinica, 2(2): 461--493, 2007.

39. I. Ibragimov, S. Rjasanow, and K. Straube. Hierarchical Cholesky decomposition of sparse matrices arising from curl-curl-equations. J. Numer. Math., 15(1): 31--58, 2007.

38. S. Rjasanow and W. Wagner. Time splitting error in DSMC schemes for the inelastic Boltzmann equation. SIAM J. Numerical Anal., 45(1): 54--67, 2007.

37. A. Hildebrandt, H.-P. Lenhof, R. Blossey, S. Rjasanow, and O. Kohlbacher. Electrostatic potentials of proteins in water: A structured continuum approach. Bioinformatics, 23(2): 99--103, 2007.

36. O. Rain, B. Auchmann, S. Kurz, V. Rischmueller, and S. Rjasanow. Edge-Based BE-FE Coupling for Electromagnetics. IEEE Transaction on Magnetics, 42(4): 679–682, 2006.

35. R. Kirsch, R. Duduchava, and S Rjasanow. On estimates of the Boltzmann collision operator with cutoff. J. Math. Fluid Mech., 8(2): 242--266, 2006.

34. O. von Estorff, S. Rjasanow, M. Stolper, and O. Zaleski. Two efficient methods for a multifrequency solution of the Helmholtz equation. Comput. Vis. Sci., 8(3-4):159-167, 2005.

33. I. M. Gamba, S. Rjasanow, and W. Wagner. Direct simulation of the uniformly heated granular Boltzmann equation. Math. Comput. Modelling, 42(5-6):683-700, 2005.

32. R. Duduchava and S. Rjasanow. Mapping properties of the Boltzmann collision operator. Integral Equations Operator Theory, 52(1):61-84, 2005.

31. A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, and H.-P. Lenhof. Novel formulation of nonlocal electrostatics. Phys. Rev. Lett, 93(10):104-108, 2004.

30. S. Kurz, O. Rain, V. Rischmüller, and S. Rjasanow. Discretization of boundary integral equations by differential forms on dual grids. IEEE Transaction on Magnetics, 40(2):826-829, 2004.

29. A. Buchau, S. Kurz, O. Rain, V. Rischmüller, S. Rjasanow, and W. M. Rucker. Comparison between different approaches for fast and efficient 3D BEM computations. IEEE Transaction on Magnetics, 39(2):1107-1110, 2003.

28. M. Köhl and S. Rjasanow. Multifrequency analysis for the Helmholtz equation. Comput. Mech., 32(4-6):234-239, 2003.

27. M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices. Computing, 70(1):1-24, 2003.

26. S. Kurz, O. Rain, and S. Rjasanow. Application of the Adaptive Cross Approximation Technique for the Coupled BE-FE Solution of Electromagnetic Problems. Comput. Mech., 32(4-6):423-429, 2003.

25. I. Ibragimov and S. Rjasanow. Numerical solution of the Boltzmann equation on the uniform grid. Computing, 69(2):163-186, 2002.

24. S. Kurz, O. Rain, and S. Rjasanow. The Adaptive Cross Approximation Technique for the 3D Boundary Element Method. IEEE Transaction on Magnetics, 38(2):421-424, 2002.

23. S. Rjasanow and W. Wagner. Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation. Math. Comput. Modelling, 33(8-9):907-926, 2001.

22. A. V. Bobylev and S. Rjasanow. Numerical solution of the Boltzmann equation using a fully conservative difference scheme based on the fast Fourier transform. Transport Theory Statist. Phys., 29(3-5):289-310, 2000.

21. S. Rjasanow and W. Wagner. A temperature time counter scheme for the Boltzmann equation. SIAM J. Numer. Anal., 37(6):1800-1819 (electronic), 2000.

20. A. V. Bobylev and S. Rjasanow. Fast deterministic method of solving the Boltzmann equation for hard spheres. Eur. J. Mech. B Fluids, 18(5):869-887, 1999.

19. R. Illner and S. Rjasanow. Difference scheme for the Vlasov-Manev system. Doc. Math., 4:179-201 (electronic), 1999.

18. S. Rjasanow and W. Wagner. Stochastic particle methods for nonlinear equations. Z. Angew. Math. Mech., 78(S1):173-176, 1998.

17. S. Rjasanow and W. Wagner. On time counting procedures in the DSMC method for rarefied gases. Math. Comput. Simulation, 48(2):151-176, 1998.

16. S. Rjasanow, T. Schreiber, and W. Wagner. Reduction of the number of particles in the stochastic weighted particle method for the Boltzmann equation. J. Comput. Phys., 145(1):382-405, 1998.

15. S. Rjasanow. The structure of the boundary element matrix for the three-dimensional Dirichlet problem in elasticity. Numer. Linear Algebra Appl., 5(3):203-217, 1998.

14. S. Rjasanow and W. Wagner. A generalized collision mechanism for stochastic particle schemes approximating Boltzmann-type equations. Comput. Math. Appl., 35(1-2):165-178, 1998. Simulation methods in kinetic theory.

13. S. Rjasanow and S. Tiwari. Sobolev norm as a criterion of local thermal equilibrium. European J. Mech. B Fluids, 16(6):863-876, 1997.

12. A. Bobylev and S. Rjasanow. Difference scheme for the Boltzmann equation based on the fast Fourier transform. European J. Mech. B Fluids, 16(2):293-306, 1997.

11. S. Rjasanow and W. Wagner. Stochastic systems of weighted particles approximating the spatially inhomogeneous boltzmann equation. Z. Angew. Math. Mech., 76(S3):215-218, 1996.

10. S. Rjasanow and W. Wagner. Numerical study of a stochastic weighted particle method for a model kinetic equation. J. Comput. Phys., 128(2):351-362, 1996.

9. S. Rjasanow and W. Wagner. A stochastic weighted particle method for the Boltzmann equation. J. Comput. Phys., 124(2):243-253, 1996.

8. M. Pester and S. Rjasanow. A parallel preconditioned iterative realization of the panel method in 3D. Numer. Linear Algebra Appl., 3(1):65-80, 1996.

7. S. Rjasanow. Optimal preconditioner for boundary element formulation of the Dirichlet problem in elasticity. Math. Methods Appl. Sci., 18(8):603-613, 1995.

6. S. Rjasanow. Heat transfer in an insulated exhaust pipe. J. Engrg. Math., 29(1):33-49, 1995.

5. M. Pester and S. Rjasanow. A parallel version of the preconditioned conjugate gradient method for boundary element equations. Numer. Linear Algebra Appl., 2(1):1-16, 1995.

4. S. Rjasanow. Effective algorithms with circulant-block matrices. Linear Algebra Appl., 202:55-69, 1994.

3. R. Illner and S. Rjasanow. Numerical solution of the Boltzmann equation by random discrete velocity models. European J. Mech. B Fluids, 13(2):197-210, 1994.

2. A. Meyer and S. Rjasanow. An effective direct solution method for certain boundary element equations in 3D. Math. Methods Appl. Sci., 13(1):43-53, 1990.

1. S. Rjasanow. Zweigittermethode für eine Modellaufgabe bei BEM-Diskretisierung. Wiss. Z. Tech. Univ. Karl-Marx-Stadt, 29(2):230-235, 1987.